Synthesis of 7-Benzylideneoctahydro-2H-pyrido[1,2-a]pyrazines, Bicyclic Analogues of the Calcium Antagonist Flunarizine

M. Ashty Saleh, Frans Compernolle,* Suzanne Toppet and Georges J. Hoornaert Laboratorium voor Organische Synthese, K. U. Leuven, Celestijnenlaan 200F, B-3001 Leuven-Heverlee, Belgium

The bicyclic amino ketone 4 (2-benzyloctahydro-2H-pyrido[1,2-a]pyrazin-7-one) has been converted in four steps into the pharmacologically interesting (Z) - and (E)-7-benzylideneoctahydro-2H-pyrido[1.2-a]pyrazines 2a, b, bicyclic analogues of the calcium antagonist flunarizine 1. In the key step. olefination of the ketone group, the yield was highly improved ($15-20 \% \rightarrow 82-85 \%$) by using (a) the phosphonate anion instead of the Wittig reagent and (b) the solvent 1.3-dimethylimidazolidin-2-one instead of tetrahydrofuran. Debenzylation and final substitution of the 2amino group with ($\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}$ gave the geometric isomers $\mathbf{2 a}(Z)$ and $\mathbf{2 b}(E)$ in 53% overall yield.

The calcium antagonist flunarizine, a drug often used in the treatment of migraine, has the 1,4 -substituted piperazine structure $1 .{ }^{1}$ In the context of our research on 2,5 -substituted piperidines, ${ }^{2-9}$ we were interested in the synthesis of the bicyclic compounds 2 which integrate structural features of the piperazine 1 and the 2,5 -substituted piperidine ring system. The more rigid bicyclic framework might serve to fix the 'active conformation' of the flexible monocyclic drug compound, resulting in a more selective binding to the target receptor and improved drug activity.

Results and Discussion

From previous work ${ }^{2}$ two complementary synthons, i.e. the acetal amine 3 and the N-benzyl ketone 4, were available for the synthesis of the Z - and E-isomers $\mathbf{2 a}$ and $\mathbf{2 b}$. In a first, more straightforward approach, the amine 3 was N-alkylated to afford the 2 -bis(p-fluorophenyl)methyl derivative 5 . However, the newly introduced N-substituent suffered rapid hydrolysis under the vigorous acidic conditions ($6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, reflux for 30 min) required for subsequent removal of the acetal protecting group. Accordingly, additional protection and deprotection of the 2 -amino group had to be accommodated in our synthetic scheme, suggesting the use of the synthon 4.

Our initial attempts for conversion of 4 into the Z - and E benzylidene intermediates $\mathbf{6 a}$ and $\mathbf{6 b}$, using the Wittig reagent $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ in tetrahydrofuran (THF) were frustrated by low yields ($15-20 \%$). In further experiments performed on both 4 and the monocyclic model compound 9 , we varied the proportions of reagents and used different bases for generation of the Wittig reagent (i.e. BuLi, $\mathrm{NaH}, \mathrm{KOBu}^{\prime}$) but this resulted in equally unsatisfactory yields (Table 1). Concurrent abstraction of an acidic proton by the reagent to form an enolate anion gave rise to recovery of the starting ketone and to

6a $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$ 6b
7a $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et} 7 \mathrm{~b}$
a $R=H$

9

formation of more polar aldol dimers (e.g. $\mathrm{M}^{+} 488$ for the aldol derived from 4).
Since the α-amino ketones 4 and 9 are inherently unstable as the free bases, we sought to suppress their self-condensation by enhancing the nucleophilic properties of the olefination reagent. When using the phosphonate anion reagent $\mathrm{PhCH}(\mathrm{Na})-$ $\mathrm{PO}(\mathrm{OEt})_{2}$ in THF, with and without addition of 15 -crown-5 ether, ${ }^{10}$ the yields of olefins $\mathbf{6 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$ were increased to $40-45 \%$. Following the same line of reasoning, the solvent THF was replaced with 1,3-dimethylimidazolidin-2-one 11, a known substitute for the alkali-metal complexing agent hexamethylphosphoramide (HMPA). ${ }^{11}$ In our application, the enhanced reactivity of the phosphonate anion led to rapid conversion of the ketones 4 and 9 , at low temperature ($5 \rightarrow 20^{\circ} \mathrm{C}$), into the

Table 1 Yields for olefination of ketones $\mathbf{4}$ and 9

Reagents	Solvent	Base	Yields ${ }^{\text {a of 10a, }}$ or 6a, b$\%$

${ }^{a}$ The yields are based on the acetal precursor of 4 (2-benzyl-7,7-ethylenedioxyoctahydro- 2 H -pyrido $[1,2-a]$ pyrazine), ${ }^{2}$ and $9-\mathrm{HCl}$.
${ }^{b}$ With and without the addition of $15-$ crown-5.
Table 2δ Values ${ }^{a}$ in ppm in the ${ }^{13} \mathrm{C}$ NMR spectra for the allylic C-atoms of Z - and E-isomers

Z-isomers	C-6	C-8	E-isomers	C-6	C-8
2a	55.7	34.1	$\mathbf{2 b}$	63.2	26.8
6a	55.7	34.1	$\mathbf{6 b}$	63.3	$\mathbf{2 6 . 8}$
7a	55.8	33.9			
8a	56.2	34.3			
$Z_{\text {-isomer }}$	C-2	C-4	E-isomer	C-2	C-4
$\mathbf{1 0 a}^{b}$	54.5	35.0	$\mathbf{1 0 b}^{b}$	62.2	27.3

${ }^{a} \delta$ Values were assigned by selective ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ decoupling. ${ }^{6}$ Measurement carried out on the mixture of $E, Z-10 \mathrm{a}, \mathrm{b}$.
alkenes $\mathbf{6 a}, \mathbf{b}$ and $10 \mathbf{a}, \mathbf{b}$ in $82-85 \%$ yield. When 11 was used as a solvent in the reaction of 4 and 9 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$, the yield was improved from 15-20 to 40\% (Table 1).

The geometric isomers $\mathbf{6 a}$ and $\mathbf{6 b}$ were readily separated by using column chromatography. Several methods were tried to effect deprotection of the N-benzyl group. Catalytic hydrogenation or reduction with sodium in liquid ammonia ${ }^{12}$ led to preferential saturation of the double bond ($\mathrm{M}^{+} 320$). Treatment with AlCl_{3} in benzene ${ }^{13}$ gave rise to electrophilic substitution of the solvent, presumably with formation of the 7 -diphenylmethyl derivative ($\mathbf{M}^{+} 396, m / z 165$). Finally, debenzylation of $\mathbf{6 a}$ and 6b was effected in 95% yield by reaction with ethyl chloroformate ${ }^{14}$ in dichloromethane. The resulting carbamates 7 a and 7b were converted into the corresponding amines 8 a and $\mathbf{8 b}$ by refluxing with KOH in isopropyl alcohol ${ }^{15}$ (acidic hydrolysis of 7 was very slow and did not go to completion). The conditions required for the final N-alkylation of $\mathbf{8 a}$ and $\mathbf{8 b}$ to form the target compounds 2a and 2b proved to be quite critical. No reaction was observed with the reagent $\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}$ under the usual conditions (acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}$, KI , reflux). ${ }^{16}$ However, the desired transformation was effected in high yield by subjecting the purified amines to treatment with the alkylating reagent and an excess of $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$in refluxing $o-$ dichlorobenzene. No reaction occurred for the unpurified amines $\mathbf{8 a}$ and $\mathbf{8 b}$ obtained upon alkaline treatment of the carbamates 7 a and $\mathbf{7 b}$.

The overall yield for compounds $\mathbf{2}$ was 53% (14% for $\mathbf{2 a}$ and 39% for $\mathbf{2 b}$) when calculated from the acetal precursor ${ }^{2}$ of the synthon 4 and 63 and 60% from the intermediates $\mathbf{6 a}$ and $\mathbf{6 b}$. Relative structure assignments of the Z - and E-isomers were based on the γ-effect ${ }^{17}$ exerted by the phenyl group on the proximate allylic C-6 or C-8 atoms in the ${ }^{13} \mathrm{C}$ NMR spectrum (Table 2). For the E-isomers, shielding of $\mathrm{C}-8$ and deshielding of C-6 was observed, whereas the reverse situation occurred for the Z-isomers.

No significant pharmacological activity was observed for compounds 2a and 2b from the in vitro and in vivo tests responding to flunarizine $\mathbf{1}$. Although a molecular model of the E-isomer $\mathbf{2 b}$ is superimposable with some of the more stable conformations of piperazine compound $\mathbf{1}$, apparently the rather
rigid bicyclic structure of 2b does not fit well onto the binding site of the receptor molecule involved.

Conclusions

The synthesis of the bicyclic analogues $\mathbf{2 a}$ and $\mathbf{2 b}$ of flunarizine involved 13 steps starting from 1-benzylpiperidin-3-one, and was accomplished with an overall yield of 27% (7% for $2 a$ and 20% for $\mathbf{2 b}$). By a suitable choice of reagent and solvent, the crucial step in this sequence, i.e. olefination of the bicyclic x-amino ketone 4, was optimized to give an 85% yield of intermediates $\mathbf{6 a}$ and $\mathbf{6 b}$. The lack of bioactivity observed for the E-isomer $\mathbf{2 b}$ may give an important clue with respect to the 'active conformation' of the piperazine drug $\mathbf{1}$, i.e the distance and orientation of active centres such as the N -atoms and the phenyl group.

Experimental

All m.p.s are uncorrected. IR spectra were recorded as thin films between NaCl plates or as solids in KBr pellets on a PerkinElmer 297 grating IR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WM 250 instrument operating at 250 MHz for ${ }^{1} \mathrm{H}$ and 63 MHz for ${ }^{13} \mathrm{C}$ measurements. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm relative to tetramethylsilane as an internal reference. J Values are recorded in Hz . Mass spectra were run on a Kratos MS50 instrument; the ion source temperature was $150-250^{\circ} \mathrm{C}$ as required. Exact mass measurements were performed at a resolution of 10000 . Analytical thin layer chromatography was performed using Merck silica gel 60 PF-224. Column chromatography was carried out using 70-230 mesh silica gel 60 (E. M. Merck).

2-[Bis(p-fluorobenzylidene)]-7,7-ethylenedioxyoctahydro-2Hpyrido $[1,2-\mathrm{a}]$ pyrazine 5.-A stirred mixture of the crude product 3 (350 mg) [prepared from 7,7-ethylenedioxyocta-hydro- $2 H$-pyrido $[1,2-a$]pyrazin-3-one ($400 \mathrm{mg}, 1.89 \mathrm{mmol}$) and $\left.\mathrm{LiAlH}_{4}\right]^{2}$ in o-dichlorobenzene ($10 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{4} \mathrm{NBr}(600 \mathrm{mg}$, 1.86 mmol) and chlorobis(4-fluorophenyl)methane (630 mg , 2.73 mmol) was heated at reflux for 10 min under an atmosphere of nitrogen. The cooled mixture was chromatographed on a silica column with EtOAc as the eluent to afford $5(600 \mathrm{mg}, 80 \%)$ as a solid, m.p. $190-191^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 68.6; H, $6.6 ; \mathrm{N}, 6.9 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.98 ; \mathrm{H}, 6.54 ; \mathrm{N}, 7.00 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4-1.6(4 \mathrm{H}, \mathrm{m}, 8,9-\mathrm{H}), 1.78\left(1 \mathrm{H}, \mathrm{td}, J 10,3,3_{\mathrm{ax}}-\mathrm{H}\right)$, $1.82\left(1 \mathrm{H}, \mathrm{t}, J 10,1_{\mathrm{ax}}-\mathrm{H}\right), 2.02\left(1 \mathrm{H}, \mathrm{m}, 9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.17(1 \mathrm{H}, \mathrm{d}, J 11$, $\left.6_{\mathrm{ax}}-\mathrm{H}\right), 2.20-2.35\left(2 \mathrm{H}, \mathrm{m}, 4_{\mathrm{ax}}-\mathrm{H}, 1_{\mathrm{eq}}-\mathrm{H}\right), 2.60-2.74\left(2 \mathrm{H}, \mathrm{m}, 4_{\mathrm{eq}}-\right.$ $\left.\mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.75\left(1 \mathrm{H}, \mathrm{dd}, J 11,2,6_{\mathrm{eq}}-\mathrm{H}\right), 4.0(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.25\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \mathrm{HAr}_{2}\right), \mathrm{Ar}, 7.0(4 \mathrm{H}, \mathrm{t}, J 8.5,3-\mathrm{H})$ and $7.35(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.
(E, Z)-1-Benzyl-3-benzylidenepiperidine 10a, b.-A solution of 1-benzylpiperidin-3-one. $\mathrm{HCl}(2.00 \mathrm{~g}, 8.86 \mathrm{mmol}$) in water (20 cm^{3}) was made alkaline with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were evaporated to dryness to give the free base 1-benzylpiperidin-3-one 9 $(1.55 \mathrm{~g})$ as an oil. To a stirred slurry of $\mathrm{NaH}(80 \%$ dispersion in mineral oil; 333 mg) in 1,3-dimethylimidazolidin-2-one ($3 \mathrm{~cm}^{3}$), a mixture of 9 and $\mathrm{PhCH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}(2.20 \mathrm{~g}, 9.6 \mathrm{mmol})$ in $1,3-$ dimethylimidazolidin-2-one ($3 \mathrm{~cm}^{3}$) was added dropwise over 5 min . The reaction mixture was stirred for 30 min , and then was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$. The extract was washed with water ($2 \times 50 \mathrm{~cm}^{3}$) and evaporated. The residue was chromatographed over a silica column, using 50% EtOAc-hexane as eluent to give $10(1.88 \mathrm{~g}, 81 \%$ from 9. HCl) as a semisolid. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis showed that the product 10 consisted of two isomers: the Z-isomer 10a (45%) and E-isomer $10 \mathrm{~b}(55 \%)$.

10a: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.74(2 \mathrm{H}$, quintet, $J 5.6,5-\mathrm{H}), 2.42(2 \mathrm{H}, \mathrm{t}, J 6$, $4-\mathrm{H}), 2.58(2 \mathrm{H}, \mathrm{t}, J 6,6-\mathrm{H}), 3.17(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 3.50(2 \mathrm{H}$, $\left.\mathrm{NCH} \mathrm{N}_{2} \mathrm{Ph}, \mathrm{s}\right), 6.3(1 \mathrm{H}, \mathrm{s}$, vinyl-H) and $7.25(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.6(\mathrm{C}-5), 34.95(\mathrm{C}-4), 54.15(\mathrm{C}-6), 54.45(\mathrm{C}-2), 63.0$ ($\mathrm{NCH}_{2} \mathrm{Ph}$) and $123.7(\mathrm{CH}=\mathrm{C})$.

10b: (Found: $\mathrm{M}^{+}, 263.1672 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}$ requires $M, 263.1672$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.65(2 \mathrm{H}$, quintet, $J 5.5,5-\mathrm{H}), 2.28(2 \mathrm{H}, \mathrm{t}, J 6,4-\mathrm{H})$, $2.55(2 \mathrm{H}, \mathrm{t}, J 6,6-\mathrm{H}), 3.07(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 3.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $6.30(1 \mathrm{H}, \mathrm{s}$, vinyl- H$)$ and $7-7.5(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.7$ (C-5), $27.3(\mathrm{C}-4), 53.9(\mathrm{C}-6), 62.2(\mathrm{C}-2), 63.1\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$ and $124.2(\mathrm{CH}=\mathrm{C})$.
(Z)- and (E)-2-Benzyl-7-benzylideneoctahydro-2H-pyrido-[1,2-a pyrazine $\mathbf{6 a}, 6 \mathrm{~b}$.-To a stirred and cooled $\left(5^{\circ} \mathrm{C}\right)$ slurry of $\mathrm{NaH}(80 \%$ dispersion in mineral oil; 790 mg$)$ in 1,3-dimethyl-imidazolidin-2-one $\left(7 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 15 min a mixture of $\mathrm{PhCH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}(5.30 \mathrm{~g}, 23.2 \mathrm{mmol})$ and the crude product $4(5.0 \mathrm{~g})$ [prepared from the acetal precursor of $4(6.25 \mathrm{~g}, 21.7 \mathrm{mmol})$ and $\left.6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(180 \mathrm{~cm}^{3}\right)\right] .{ }^{2}$ The suspension was stirred at room temp. for 25 min after which work-up in the manner described for $\mathbf{1 0 a}, \mathbf{b}$ and column chromatography on silica gel with EtOAc as the eluent afforded two isomers: the less polar Z-isomer $6 \mathbf{a}(1.50 \mathrm{~g}, 22 \%)$, and the more polar E-isomer $6 \mathrm{~b}(4.40 \mathrm{~g}, 64 \%$). Both were isolated as crystalline products, m.p. (from EtOAc) $91-92$ and $121-122^{\circ} \mathrm{C}$, respectively. The total yield thus was 86% from the acetal precursor of 4 .

6a: (Found: C, 82.7; H, 8.35; N, 8.7\%; $\mathbf{M}^{+}, 318.2097$. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}$ requires $\mathrm{C}, 82.98 ; \mathrm{H}, 8.23 ; \mathrm{N}, 8.80 \% ; M, 318.2095$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660 \mathrm{w}\left(\mathrm{C}=\mathrm{C}\right.$ exocyclic); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.38(1 \mathrm{H}$, $\left.\mathrm{qd}, J 12,5,9_{\mathrm{ax}}-\mathrm{H}\right), 1.6\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{eq}}-\mathrm{H}\right), 1.9\left(1 \mathrm{H}, \mathrm{t}, J 12, \mathrm{l}_{\mathrm{ax}}-\mathrm{H}\right)$, $2.23\left(1 \mathrm{H}, \mathrm{tt}, J 11,3,9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.31\left(1 \mathrm{H}, \mathrm{td}, J 11,3,4_{\mathrm{ax}}-\mathrm{H}\right), 2.1-2.5$ $\left(3 \mathrm{H}, \mathrm{m}, 8_{\mathrm{ax}}-\mathrm{H}, 4_{\mathrm{eq}}-\mathrm{H}, \mathrm{I}_{\mathrm{eq}}-\mathrm{H}\right), 2.61\left(1 \mathrm{H}, \mathrm{d}, J 12,6_{\mathrm{ax}}-\mathrm{H}\right), 2.65-2.8$ $\left(3 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 4_{\mathrm{eq}}-\mathrm{H}, 1_{\mathrm{eq}}-\mathrm{H}\right), 3.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.85(1 \mathrm{H}$, $\left.\mathrm{d}, J 12,6_{\mathrm{eq}}-\mathrm{H}\right), 6.3(1 \mathrm{H}, \mathrm{s}$, vinyl-H) and $7.2(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 30.5(\mathrm{C}-9), 34.1(\mathrm{C}-8), 52.8(\mathrm{C}-3), 54.9(\mathrm{C}-4), 58.9(\mathrm{C}-$ 1), $60.5(\mathrm{C}-9 \mathrm{a}), 55.7(\mathrm{C}-6), 62.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 124.1(\mathrm{CH}=\mathrm{C}), 137.1$ (C-7), $\mathrm{C}=\mathrm{CH} P h, 126.1$ (C-p), 127.8 (C-o), 129 (C-m), 137.2 (Cipso), $\mathrm{CH}_{2} \mathrm{Ph}, 126.9(\mathrm{C}-p), 128.1(\mathrm{C}-o), 128.9(\mathrm{C}-m)$ and 138 (C-ipso).

6b: (Found: C, $82.8 ; \mathrm{H}, 8.2 ; \mathrm{N}, 8.7 \% ; \mathbf{M}^{+}, 318.2098 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}$ requires $\mathrm{C}, 82.98 ; \mathrm{H}, 8.23 ; \mathrm{N}, 8.80 \% ; M, 318.2095$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660 \mathrm{w}(\mathrm{C}=\mathrm{C}$ exocyclic $) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25(1 \mathrm{H}, \mathrm{q}$, $J 11,4,9 \mathrm{a}-\mathrm{H}), 1.56\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{eq}}-\mathrm{H}\right), 1.88\left(1 \mathrm{H}, \mathrm{t}, J 11,1_{\mathrm{ax}}-\mathrm{H}\right), 1.98$ ($1 \mathrm{H}, \mathrm{td}, J 11.5,4,8 \mathrm{ax}-\mathrm{H}), 2.2\left(1 \mathrm{H}, \mathrm{tt}, J 11,4,9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.33(1 \mathrm{H}$, td, $\left.J 11,3,4_{\mathrm{ax}}-\mathrm{H}\right), 2.4\left(1 \mathrm{H}, \mathrm{td}, J 11,3,3_{\mathrm{ax}}-\mathrm{H}\right), 2.73(1 \mathrm{H}, \mathrm{dt}, J 11,3$, $\left.2,1_{e q}-\mathrm{H}\right), 2.88\left(1 \mathrm{H}, \mathrm{d}, J 12,6_{\mathrm{ax}}-\mathrm{H}\right), 2.73-3.0\left(3 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 4_{\mathrm{eq}}-\right.$ $\left.\mathrm{H}, 8_{\mathrm{eq}}-\mathrm{H}\right), 3.31\left(1 \mathrm{H}, \mathrm{d}, J 12,6_{\mathrm{eq}}-\mathrm{H}\right), 3.45-3.52(2 \mathrm{H}, \mathrm{dd}, J 12,12$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.4(1 \mathrm{H}, \mathrm{s}$, vinyl-H) and $7.1-7.4(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.8(\mathrm{C}-8), 30.2(\mathrm{C}-9), 52.9(\mathrm{C}-3), 54.8(\mathrm{C}-4), 58.9$ (C-1), $60.9(\mathrm{C}-9 \mathrm{a}), 63.3(\mathrm{C}-6), 63\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 124.5(\mathrm{CH}=\mathrm{C})$ and $137.1(\mathrm{C}-7), \mathrm{C}=\mathrm{CH} P h, 126.2(\mathrm{C}-p), 128(\mathrm{C}-o), 129.1(\mathrm{C}-m), 137.3$ (C-ipso), CH_{2} Ph, $126.9(\mathrm{C}-p), 128.1(\mathrm{C}-o), 128.9(\mathrm{C}-m)$ and 138 (C-ipso).

(Z)-7-Benzylidene-2-ethoxycarbonyloctahydro-2H-pyrido-

 [1,2-a] purazine 7a.-To a stirred solution of $6 \mathbf{a}(2.00 \mathrm{~g}, 6.3$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise at $0^{\circ} \mathrm{C}$ ethyl chloroformate $\left(0.61 \mathrm{~cm}^{3}, 6.4 \mathrm{mmol}\right)$. The reaction mixture was kept under nitrogen at $0^{\circ} \mathrm{C}$ for 2 h and then at room temp. for 1 h . The solution was made alkaline with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined extracts were evaporated and the residual product was chromatographed on silica with $\mathrm{EtOAc}-\mathrm{CHCl}_{3}(3: 7)$ to afford $7 \mathrm{a}(1.78 \mathrm{~g}$, 95%) as an oil (Found: $\mathrm{M}^{+}, 300.1838 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, $300.1836) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1700\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25(3$ $\left.\mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38(1 \mathrm{H}, \mathrm{qd}, J 13,12,11,5,9 \mathrm{a}-\mathrm{H}), 1.74$ $\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{eq}}-\mathrm{H}\right), 2.07\left(1 \mathrm{H}, \mathrm{tt}, J 11,3,9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.18(1 \mathrm{H}, \mathrm{td}, J 12$,$\left.3.5,4_{\mathrm{ax}}-\mathrm{H}\right), 2.30\left(1 \mathrm{H}, \mathrm{td}, J 12,5,8_{\mathrm{ax}}-\mathrm{H}\right), 2.60\left(1 \mathrm{H}, \mathrm{d}, J 12,6_{\mathrm{ax}}-\mathrm{H}\right)$, $2.6-2.7\left(2 \mathrm{H}, \mathrm{m}, 3_{\mathrm{ax}}-\mathrm{H}, 4_{e q}-\mathrm{H}\right), 3.0\left(1 \mathrm{H}, \mathrm{t}, J 11,1_{\mathrm{ax}}-\mathrm{H}\right), 3.85(1 \mathrm{H}$, $\left.\mathrm{d}, J 12,6_{\mathrm{eq}}-\mathrm{H}\right), 3.9-4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}_{\mathrm{eq}}-\mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 4.15(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.38(1 \mathrm{H}, \mathrm{s}$, vinyl- H$)$ and $7.15-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.7\left(\mathrm{CH}_{3}\right), 30.1(\mathrm{C}-9), 33.9(\mathrm{C}-8), 43.4(\mathrm{C}-3), 48.8$ $(\mathrm{C}-1), 54.6(\mathrm{C}-4), 55.8(\mathrm{C}-6), 60.5(\mathrm{C}-9 \mathrm{a}), 61.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 124.5$ $(\mathrm{CH}=\mathrm{C}), 137.1(\mathrm{C}-7), 155.2(\mathrm{C}=\mathrm{O}), \mathrm{C}=\mathrm{CHPh}, 126.3(\mathrm{C}-p), 128$ (C-o), 129 (C-m) and 137 (C-ipso).
(E)-7-Benzylidene-2-ethoxycarbonyloctahydro-2H-pyrido-[1,2-a] pyrazine $7 \mathbf{7 b}$.-A stirred solution of $\mathbf{6 b}(2.00 \mathrm{~g}, 6.4 \mathrm{mmol})$ was treated with ethyl chloroformate $\left(0.61 \mathrm{~cm}^{3}, 6.4 \mathrm{mmol}\right)$ in the manner described above to afford $7 \mathrm{~b}(1.75 \mathrm{~g}, 93 \%)$ as an oil after column chromatography.
(Z)-7-Benzylideneoctahydro-2H-pyrido[1,2-a]pyrazine 8a.A stirred solution of $7 \mathrm{a}(7.59 \mathrm{~g}, 25.3 \mathrm{mmol})$ in isopropyl alcohol $\left(6 \mathrm{~cm}^{3}\right)$ was refluxed with $\mathrm{KOH}(20 \mathrm{~g}, 0.36 \mathrm{~mol})$ for 1 h under nitrogen. The mixture was concentrated by rotary evaporation and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 300 \mathrm{~cm}^{3}\right)$ and filtered. The filtrate was evaporated and the residue was chromatographed on a short column of silica gel eluting with $\mathrm{Et}_{2} \mathrm{NH}-\mathrm{MeOH}-\mathrm{EtOAc}(1: 5: 94)$ to give pure $8 \mathrm{a}(4.62 \mathrm{~g}, 80 \%$) as an oil; $\nu_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3300(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39(1 \mathrm{H}$, tdd, $J 12,10,5,9 \mathrm{a}-\mathrm{H}), 1.67(1 \mathrm{H}, \mathrm{d} \times$ quint, $J 12,3,2,3,2$, $\left.9_{\mathrm{eq}}-\mathrm{H}\right), 1.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.05\left(1 \mathrm{H}, \mathrm{tt}, J 10,3,9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.2(1 \mathrm{H}$, ddd, $\left.J 12,9,6,4_{\mathrm{ax}}-\mathrm{H}\right), 2.32\left(1 \mathrm{H}, \mathrm{tm}, J 14,13,8_{\mathrm{ax}}-\mathrm{H}\right), 2.43(1 \mathrm{H}$, $\mathrm{d} \times$ quint, $\left.J 14,3,2,2,2,8_{\text {eq }}-\mathrm{H}\right), 2.52\left(1 \mathrm{H}, \mathrm{dd}, J 12,10, \mathrm{I}_{\mathrm{ax}}-\mathrm{H}\right)$, $2.63\left(1 \mathrm{H}, \mathrm{d}, J 13,6_{\mathrm{ax}}-\mathrm{H}\right), 2.70\left(1 \mathrm{H}, \mathrm{dt}, J 12,3,2,4_{\mathrm{eq}}-\mathrm{H}\right), 2.9(2$ $\left.\mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right), 2.91\left(1 \mathrm{H}, \mathrm{dd}, J 11,2.5, \mathrm{I}_{\mathrm{eq}}-\mathrm{H}\right), 3.84(1 \mathrm{H}$, dd, $\left.J 13,2,6_{\mathrm{eq}}-\mathrm{H}\right), 6.35(1 \mathrm{H}, \mathrm{s}$, vinyl-H) and $7.1-7.4(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 30.5(\mathrm{C}-9), 34.3(\mathrm{C}-8), 45.8(\mathrm{C}-3), 51.9(\mathrm{C}-1)$, 56.2 (C-6), 56.3 (C-4), 62.3 (C-9a), $124.1(\mathrm{CH}=\mathrm{C}), 137.2$ (C-7), 126.2 (C-p), 127.9 (C-o), 129 (C-m) and 137 (C-ipso); $m / z 228$ $\left(\mathrm{M}^{+}\right), 199,198,186(100 \%)$ and 91 .
(E)-7-Benzylideneoctahydro-2H-pyrido[1,2-a]pyrazine 8b.A stirred solution of $7 \mathrm{~b}(3.40 \mathrm{~g}, 11.3 \mathrm{mmol})$ in isopropyl alcohol ($5 \mathrm{~cm}^{3}$) was refluxed with $\mathrm{KOH}(17 \mathrm{~g}, 0.30 \mathrm{~mol})$ under nitrogen for 1 h . Work-up as described for $8 \mathbf{a}$ and column chromatography on silica afforded $\mathbf{8 b}(2.08 \mathrm{~g}, 81 \%)$ as an oil; mass and IR spectra were similar to those of $8 \mathbf{8 a}$.
(Z)-7-Benzylidene-2-[bis(p -fluorophenyl)methyl]octahydro2 H -pyrido $[1,2-\mathrm{a}]$ pyrazine $\mathbf{2 a}$.-A stirred mixture of $8 \mathrm{a}(4.46 \mathrm{~g}$, 19.6 mmol) in o-dichlorobenzene ($70 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{4} \mathrm{NBr}(11.4 \mathrm{~g}, 35.4$ mmol) and chlorobis(4-fluorophenyl)methane ($7.00 \mathrm{~g}, 29.3$ mmol) was heated at reflux under nitrogen for 40 min . The solvent was removed by rotary evaporation and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$. The solution was treated with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$. The combined extracts were evaporated and the residue was chromatographed over silica gel (gradient elution 5 to $\left.10 \% \mathrm{EtOAc}-\mathrm{CHCl}_{3}\right)$ to afford $2 \mathrm{a}(6.9,82 \%)$ as pale brown crystals. Recrystallization from methanol or hexane gave an analytical sample, m.p. $124^{\circ} \mathrm{C}$ (Mettler) (Found: C , $77.9 ; \mathrm{H}, 6.6 ; \mathrm{F}, 8.76 ; \mathrm{N}, 6.4 \% ; M^{+}, 430.2221 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 78.11 ; \mathrm{H}, 6.55 ; \mathrm{F}, 8.83 ; \mathrm{N}, 6.51 \% ; M, 430.2219$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(1 \mathrm{H}$, tdd $, J 14,10.5,5,9 \mathrm{a}-\mathrm{H}), 1.52\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{eq}}{ }^{-}\right.$ H), $1.77\left(1 \mathrm{H}, \mathrm{dd}, J 11,10,1_{\mathrm{ax}}-\mathrm{H}\right), 2.08\left(1 \mathrm{H}, \mathrm{td}, J 11,2.5,3_{\mathrm{ax}}-\mathrm{H}\right)$, $2.22\left(1 \mathrm{H}, \mathrm{tt}, J 10,2.5,9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.34\left(1 \mathrm{H}, \mathrm{td}, J 11,3,4_{\mathrm{ax}}-\mathrm{H}\right), 2.2-$ $2.45(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.62\left(1 \mathrm{H}, \mathrm{dd}, J 11,2.5,1_{\mathrm{eq}} \mathrm{H}\right), 2.63(1 \mathrm{H}, \mathrm{d}, J$ $\left.12,6_{\mathrm{ax}}-\mathrm{H}\right), 2.6-2.67\left(2 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 4_{\mathrm{eq}}-\mathrm{H}\right), 3.85\left(1 \mathrm{H}, \mathrm{d}, J 12,6_{\mathrm{eq}}-\right.$ $\mathrm{H}), 4.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}_{2}\right), 6.31(1 \mathrm{H}, \mathrm{s}$, vinyl-H) and $7.7(13 \mathrm{H}, \mathrm{m}$, Ar); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 30.6(\mathrm{C}-9), 34.1(\mathrm{C}-8), 51.4(\mathrm{C}-3), 55.7(\mathrm{C}-6)$, $57.6(\mathrm{C}-1), 60.8(\mathrm{C}-9 \mathrm{a}), 74.3\left(\mathrm{CHAr}_{2}\right), 124.2(\mathrm{CH}=\mathrm{C}), 137.3(\mathrm{C}-$ 7), Ph, 126.2 (C-p), 127.9 (C-o), 129 (C-m), 137.1 (C-ipso), CHAr $_{2}, 115.3(\mathrm{C}-m), 129.2(\mathrm{C}-o), 138.1$ (C-ipso) and 161.7 (C-F).
(E)-7-Benzylidene-2-[bis(p-fluorophenyl)methyl]octahydro2 H -pyrido $[1,2-\mathrm{a}]$ pyrazine $\mathbf{2 b}$.-A mixture of $\mathbf{8 b}(2.10 \mathrm{~g}, 9.2$ $\mathrm{mmol})$ in o-dichlorobenzene ($50 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{4} \mathrm{NBr}(4.00 \mathrm{~g}, 12.4$ mmol) and chlorobis(4-fluorophenyl)methane ($2.50 \mathrm{~g}, 10.5$ mmol) was heated at reflux for 40 min under nitrogen. Work-up in the manner described above and column chromatography of the resulting product on silica gel using $10 \% \mathrm{EtOAc}_{\mathrm{Ct}} \mathrm{CHCl}_{3}$ afforded $2 \mathrm{~b}(3.2 \mathrm{~g}, 80 \%)$ as pale brown crystals, m.p. $122.8^{\circ} \mathrm{C}$ (from MeOH) (Found: C, $77.9 ; \mathrm{H}, 6.6 ; \mathrm{F}, 9.00 ; \mathrm{N}, 6.4 \% ; M^{+}$, 430.2210. $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 78.11 ; \mathrm{H}, 6.55 ; \mathrm{F}, 8.83 ; \mathrm{N}$, $6.51 \% ; M, 430.2219) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(1 \mathrm{H}, \mathrm{tdd}, J 14,10.5,5$, $9 \mathrm{a}-\mathrm{H}), 1.46\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{eq}}-\mathrm{H}\right), 1.76\left(1 \mathrm{H}, \mathrm{t}, J 10,1_{\mathrm{ax}}-\mathrm{H}\right), 1.98(1 \mathrm{H}$, td, $\left.J 14,5,8_{\mathrm{ax}}-\mathrm{H}\right), 2.18\left(1 \mathrm{H}, \mathrm{td}, J 11,3,3_{\mathrm{ax}}-\mathrm{H}\right), 2.22(1 \mathrm{H}, \mathrm{m}$, $\left.9 \mathrm{a}_{\mathrm{ax}}-\mathrm{H}\right), 2.40\left(1 \mathrm{H}, \mathrm{td}, J 11,3,4_{\mathrm{ax}}-\mathrm{H}\right), 2.71\left(1 \mathrm{H}, \mathrm{dd}, J 10,2, \mathrm{I}_{\mathrm{eq}}-\right.$ H), $2.7-2.8\left(2 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 4_{\mathrm{eq}}-\mathrm{H}\right), 2.90\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, 6_{\mathrm{ax}}-\mathrm{H}, 8_{\mathrm{eq}}-\mathrm{H}\right)$, $3.32\left(1 \mathrm{H}, \mathrm{dd}, J 12,2,6_{\mathrm{eq}}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHAr}), 6.41(1 \mathrm{H}$, s , vinyl-H), $7.00(4 \mathrm{H}, \mathrm{t}, J 8, \mathrm{Ar})$ and $7-7.1(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{c}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 30.1 (C-9), 26.8 (C-8), 51.4 (C-3), 54.9 (C-4), 63.2 (C-6), 57.4 (C-1), 61.1 (C-9a), $74.3\left(\mathrm{CHAr}_{2}\right), 124.6(\mathrm{CH}=\mathrm{C})$, 137.3 (C-7), Ph, 126.3 (C-p), 128 (C-o), 129 (C-m), 137.1 (Cipso), CHAr $2,115.3$ (C-m), 129.2 (C-o), 139.1 (C-ipso) and 161.8 (C-F).

Acknowledgements

The authors are indebted to the F.K.F.O. and the Ministerie voor Wetenschapsbeleid, I.U.A.P. for financial support. The authors are also grateful to R. De Boer for mass spectral analysis and to the firm Janssen Pharmaceutica for element analysis.

References

1 The Merck Index, 11th edn., S. Budavari, ed., Merck \& Co. Inc., U.S.A., 1989, p. 4070.

2 F. Compernolle, M. A. Saleh, S. Toppet and G. Hoornaert, J. Org. Chem., 1991, 56, 5192.
3 F. Compernolle, M. A. Saleh, S. Van den Branden, S. Toppet and G. Hoornaert, J. Org. Chem. 1991, 56, 2386.

4 F. Compernolle, M. A. Saleh, S. Toppet, W. De Buysser and G. Hoornaert, J. Heterocycl. Chem., 1991, 28, 1965.

5 S. Van den Branden, F. Compernolle and G. Hoornaert, J. Chem. Soc., Perkin Trans. 1, 1991, 1035.
6 S . Van den Branden, F. Compernolle and G. Hoornaert, Tetrahedron, 1992, 48, 9753.
7 M. A. Saleh, F. Compernolle, S. Van den Branden, W. De Buysser and G. Hoornaert, J. Org. Chem., 1993, 58, 690.
8 N. Baens, F. Compernolle, S. Toppet and G. Hoornaert. Tetrahedron, 1993, 49, 3193.
9 M. A. Saleh, F. Compernolle, S. Toppet and G. Hoornaert, Tetrahedron, 1994, 50, 1811.
10 R. Balker and R. J. Sims, Synthesis, 1981, 117.
11 H. Normant, Russ. Chem. Rev., 1970, 39, 457.
12 D. A. J. Ives, Can. J. Chem., 1969, 47, 3697.
13 Y. Murakami, T. Watanabe, A. Kobayashi and Y. Yokoyama, Synthesis, 1984, 738.
14 H. Kapnang and G. Charles, Tetrahedron Lett., 1983, 24, 3233.
15 M. M. Cid, J. A. Seijas, M. C. Villaverde and L. Castedo, Tetrahedron, 1988, 44, 6197.
16 J. B. Hendrickson and R. Bergeron, Tetrahedron Lett., 1970, 345.
17 R. J. Abraham and P. Loftus, Proton and Carbon-13 NMR Spectroscopy, Heyden, 1978, p. 29.

Paper 4/06391K
Received 19th October 1994
Accepted 27th October 1994

